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Mechanism of thermal conductivity suppression in doped silicon studied
with nonequilibrium molecular dynamics
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We examined the underlying mechanisms for thermal conductivity suppression in crystalline silicon by
substitutional doping with different elements (X = boron, aluminum, phosphorus, and arsenic). In particular,
the relative effects of doping-induced mass disorder, bond disorder, and lattice strain were assessed using
nonequilibrium molecular dynamics simulations. Stillinger–Weber potential parameters for Si-X interatomic
interactions were optimized by fitting to relevant atomic forces from first-principles calculations. We first
calculated the thermal conductivity variation of B-doped Si as a function of dopant concentration; the result
shows excellent agreement with existing experimental data, indicating the reliability of our force-field-based
simulations. At the dopant concentration of about 5 × 1020 cm−3, the Si thermal conductivity value is predicted
to be reduced from 137 W/mK at 300 K in undoped Si to 18/39/57/78 W/mK in As/B/P/Al-doped Si. Our study
demonstrates that the mass disorder effect is primarily responsible for the thermal conductivity suppression in
the As- and B-doped cases, whereas the bond disorder contribution is found to be more important than the mass
disorder contribution in the Al- and P-doped cases; for all these systems, the lattice strain effect turns out to play
a minor role in the reduction of lattice thermal conductivity.

DOI: 10.1103/PhysRevB.86.075202 PACS number(s): 65.40.−b

I. INTRODUCTION

Thermoelectric devices that directly convert heat energy
to electricity and vice versa have recently attracted renewed
interest for their potential applications ranging from household
power to spacecraft.1–4 The efficiency of a thermoelectric
device is usually quantified by the dimensionless figure of
merit (ZT = S2σT /κ , where S is the Seebeck coefficient, σ

is the electrical conductivity, κ is the thermal conductivity, and
T is the absolute temperature).5 Various candidate materials,
such as nanostructured compound semiconductors,6–8 have
been explored, but today’s thermoelectric materials are still
very expensive to synthesize and not yet efficient enough to be
commercially viable. Although bulk crystalline silicon (c-Si)
exhibits very poor thermoelectric performance (ZT ∼ 0.01)9

due to its high thermal conductivity, there has been a continued
interest in Si-based thermoelectric materials because they
are cheap and easy to work with and have good modifiable
electrical properties for thermoelectric applications.

Much research1,2,10–14 has been directed towards finding
ways to reduce the thermal conductivity of Si-based materials
to increase ZT . While heat conduction in Si is mainly governed
by phonon transport, recently, many attempts have been made
to suppress the thermal conductivity by introducing phonon
scattering through nanostructuring, doping, and alloying.15–18

Phonon-boundary scattering has been found to bring about a
substantial reduction of thermal conductivity in Si nanostruc-
tures, such as nanowire and thin film. In addition, the presence
of isotopes, intrinsic lattice defects, and chemical impurities
in Si would lead to scattering of phonons, which can in turn
significantly influence thermal conductivity suppression. For
instance, previous studies have demonstrated that the thermal
conductivity of Si nanowires with 50% isotope atoms can be
reduced up to about 27% of that of pure 28Si nanowires,19 and
the presence of a small concentration (∼1.5%) of vacancies
can bring about an almost 95% reduction of bulk Si thermal
conductivity at 300 K.20 In addition, the thermal conductivity

of Si can be effectively reduced by impurity doping or alloying.
It has been suggested that the mass difference between Si
and Ge (the so-called mass disorder effect) may play an
important role in thermal conductivity suppression in SiGe
alloys.21 However, the underlying atomic-level mechanism
of doping/alloying-induced phonon-impurity scattering in Si-
based materials is not yet fully clarified.

In this paper, we perform a quantitative analysis of the
effects of dopants on phonon transport in c-Si, particularly
the underlying mechanisms of phonon scattering due to
different types of dopants, including boron (B), aluminum
(Al), phosphorous (P), and arsenic (As). Previous experimental
studies22–25 have demonstrated that the effect of different
dopant species (B, P, As) on thermal conductivity reduction
tend to vary substantially. However, only a very limited amount
of effort has been undertaken to address explicitly the roles
played by dopants in the phonon-impurity scattering. To our
knowledge, most of the earlier theoretical investigations22,23,25

have focused on explaining the variation of thermal conduc-
tivity with temperature and dopant concentration based on
Klemens formula26 and Holland model,27 not the specific
contributions of different dopants. Motivated by this, this paper
attempts to address the underlying causes of phonon-impurity
scattering for different types of dopants, especially related to
the mass disorder, bond disorder, and lattice strain induced
by dopant incorporation. Nonequilibrium molecular dynamics
(NEMD)28 with the Stillinger–Weber (SW) potential model29

is adopted to calculate the thermal conductivities of doped
Si systems; the SW parameters are modified based on the
first-principles-based force-matching method.30

II. THEORY

A. Nonequilibrium molecular dynamics

Following Fourier’s law (κ = −J/�T ), thermal conduc-
tivity (κ) can be obtained by calculating a temperature
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gradient (�T ) for an imposed heat flux (J ), or vice versa,
from a NEMD simulation. We performed NEMD simulations
using large-scale atomic and molecular massively parallel
simulator (LAMMPS).31 The MD temperature (TMD) was
calculated from the velocities of constituent atoms based on
the equipartition theorem of classical statistical mechanics:
3
2NkBTMD = 1

2

∑N
i=1 mv2

i , where N is the number of atoms
in a system, kB is the Boltzmann constant, vi is the velocity
of atom i, and m is the atomic mass. If TMD is below
the Debye temperature (TD), quantum corrections to TMD

and κMD are necessary; the correction can be made by κ =
κMD

dTMD

dT
.32 (All κ values reported hereafter are after quantum

corrections, unless stated otherwise). In this paper, doped Si
systems considered were assumed to have the same TD as
Si (=645 K33), as the atomic fractions of dopants are very small
(<0.01); note that the Debye temperature of an alloy system
(A1−xBx) is typically approximated by the linear relation of
TD(AB) = (1 − x)TD(A) + xTD(B).34

B. Force-matching-based SW parameter optimization

For NEMD simulations, we employed a general form of
SW potential function which includes two-body (stretching)
and three-body (bending) terms. The SW parameters were
optimized for Si-X (X = B, P, As, or Al) systems using
a force-matching method35 based on DFT calculations of
the restoring forces associated with atomic displacements.
The force-matching-based parameterization has been demon-
strated to be a reliable choice for calculation of the lattice
thermal conductivities of Si-based materials;30,36 more details
regarding the force-matching approach can be found in Ref. 30.

The DFT force data for the parameter optimization were
obtained by displacing a dopant atom or its neighboring
atoms in the x, y, and z directions by 0.08 Å. The restoring
forces acting on the displaced atom and its four first-nearest
neighbors were considered to be matched in the SW parameter
adjustments. On the third-nearest neighbors and beyond, the
forces due to the center-atom displacement turn out to be
negligible (less than 0.01 eV/Å in the absolute value). In
this paper, the force constants for the second-nearest Si
neighbors and beyond were assumed to be the same as those
for c-Si; although the second-nearest Si atoms have three-body
interactions with the dopant atom (Si-Si-X), the contribution
is likely to be insignificant. The optimal values for a, ε, and
λ were obtained by minimizing the cross-validation error (ξ );
ξ 2 = 1

N

∑N
n=1 [F (n)

DFT − F
(n)
SW ]2, where F

(n)
DFT and F

(n)
SW refer to

the DFT and SW forces, respectively, of the nth of N total
training data for force matching.

Our DFT calculations were performed within the Perdew–
Wang 91 generalized gradient approximation (GGA-PW91),37

using the Vienna ab initio simulation package (VASP).38 We
used Vanderbilt-type ultrasoft pseudopotentials39 to represent
the interaction between ion cores and valence electrons,
and a plane-wave basis set with a kinetic energy cutoff of
250 eV. We used a 64-atom cubic supercell that contains
one dopant atom and 63 Si atoms for optimizing Si-dopant
interaction potentials. A (2 × 2 × 2) k-point grid in the scheme
of Monkhorst–Pack was used for the Brillouin zone sampling.

Table I summarizes the modified parameters from the force
matching approach; the σ values were chosen to match the

TABLE I. Modified parameters of the Stillinger–Weber inter-
atomic potential [see Eqs. (2) and (3) in Ref. 30 for Si-X interactions
(X = B, P, As, and As); σ , ε, λ, a, and cos θ0 values were
optimized based on DFT-GGA calculations of local lattice structure
and restoring forces arising from local lattice distortions.

Si-B Si-P Si-Al Si-As

σ 1.8675 2.0994 2.1483 2.1702
ε (eV) 1.2496 1.0235 1.4858 1.0772
λ 33.8815 64.3998 17.5472 49.9274
a 1.6452 1.8003 1.8379 1.8688
cos θ0 − 0.4195 − 0.3298 − 0.3251 − 0.3036

A = 7.049556277, B = 0.6022245584,
p = 4.0, q = 0.0, and γ = 1.2.

Si-X bond distances (X = B, Al, P, As) from DFT-GGA
calculations. In addition, the equilibrium Si-Si-X bond angles
(θ0) were obtained from DFT-GGA calculations, while the
equilibrium Si-Si-Si and Si-X-Si bond angles were set at
109.47◦ (tetrahedral bond angle). Figure 1 shows the com-
parisons of the restoring forces from our SW and DFT-GGA
calculations; overall, the modified SW parameters provide
excellent reproduction of corresponding DFT forces (acting
on the center dopant atoms and their Si neighbors).

III. RESULTS AND DISCUSSION

A. Comparison with experiments for B-doped Si

To assess the reliability of the SW interatomic potential
with modified parameters, we compared calculated κ values
with existing experimental data for bulk c-Si doped with B
at various doping concentrations. For NEMD simulations,
as illustrated in Fig. 2, we used a periodic rectangular cell
which consists of the heat source (SH ) and heat sink (SC)
layers, two intermediate (I ) layers, and two buffer (B) layers.
The cross section of the simulation cell consists of 10 ×
10 units (corresponding to 400 atoms). The SH /SC and B

layer thicknesses were set at LS = 5.4571 Å and LB =
54.571 Å [corresponding to one (or 400 atoms) and 10 units,
respectively, in the axial 〈100〉 direction], while LI was varied
depending on simulation cell size. Dopant atoms were assumed
to remain isolated without making any pairs or larger clusters,
and they were placed in a random manner in the simulation
domain; the dopant concentrations in the SH /SC , B, and I

layers were controlled to be (nearly) equal.
Figure 3 shows predicted κ values for B-doped bulk c-Si

at B concentrations of nB = 1.21875, 2.4375, 4.875, and
7.3125 × 1020 atoms/cm3 (corresponding to the atomic per-
centages of xB = 0.25, 0.5, 1, and 1.5 at.%, respectively).
For comparison, the experimental data available from the
published literature are also plotted. Note that each bulk
κ value was obtained through extrapolation of finite-sized
results to infinite size, as shown in the inset (here, Lz = 1/2
Ltot); refer to Ref. 20 for a more detailed description of the
computational technique. For a given simulation cell size and
dopant-concentration system, we performed 25 independent
NEMD simulations considering five different atomic-level
spatial distributions of dopants, for each of which five different
initial velocity distributions were also taken into account.
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FIG. 1. Comparison between predicted DFT and SW forces acting on the displaced dopant atom and its four first-nearest Si atoms for four
different doped systems as indicated.

The calculated κ values (after quantum corrections) are
well fitted by κ = κSi/(1 + An̄α

B) with A = 0.74186 and α =
0.7411, where κSi is the thermal conductivity of undoped
c-Si (=136.65 Wm−1K−1), and n̄B is the dimensionless
B concentration (=nB/1020 cm−3); the inverse power-law
relationship has been widely adopted to describe the ef-
fect of point-like impurities (or defects) on lattice thermal
conductivity.19,20,40,41 We can see that the predicted value of
39.27 ± 5.54 Wm−1K−1 (at nB = 4.875 × 1020/cm3) is very
close to the experimentally reported value of 40 Wm−1K−1

(at nB ≈ 5 × 1020/cm3).42 In addition, the fitted relation
shows good agreement with the experiment data of about
50 Wm−1K−1 at n = 3 × 1020/cm3 and 18.5 Wm−1K−1 at

n = 1.6 × 1021/cm3. The excellent agreement between the
simulation and experiment results increases our confidence
in the validity of the modified SW parameters for use of
estimating the lattice thermal conductivity of doped c-Si at
moderate temperatures.

B. Comparison between B-, Al-, P-, and As-doped Si systems

1. Relative effectiveness in thermal conductivity suppression

Using the same NEMD approach as described in the
previous Sec. III A, we examined how different substitutional
dopants (B, Al, P, and As) affect the κ of c-Si. Since our
intention was to compare the impurity scattering strengths

FIG. 2. Schematic illustration of a rectangular-shaped simulation domain with periodic boundary conditions imposed in the x, y, and z

directions. The simulation cell consists of heat source (SH ), two heat sink (SC), buffer (B), and intermediate (I ) layers; temperature gradients used
for thermal conductivity calculation were obtained only from the I layers to avoid any unwanted effects arising from velocity switching-induced
nonphysical phonon scatterings in the SH and SC regions. Heat flows in two directions due to the periodic boundary condition imposed in the
〈100〉 direction, as indicated
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FIG. 3. Calculated bulk thermal conductivities of B-doped Si at
300 K as a function of dopant concentration (nB ), together with
available experimental data for comparison. The solid line indicates a
fitted curve to the simulation result, which is κ = κSi/[1 + A( nB

1020 )α]
with A = 0.74186, α = 0.7411, and κSi = 136.65 Wm−1K−1. The
inset shows thermal resistivity (1/κ , after quantum corrections) for
B-doped Si at different doping concentrations as specified; for each
set, the linear line indicates the best-fit linear regression. Here, Lz is
the distance between the heat source and heat sink centers, which is
half of the total simulation cell length (Ltot; see Fig. 2).

among those doped systems, here, we considered only a doping
concentration of n = 4.875 × 1020/cm3. For different doped
systems, dopants were placed at the same sites to avoid any
possible unwanted effect associated with the disparity between
their spatial distributions. Compared to the undoped case (κSi =
136.65 ± 9.15 W/mK), the introduction of Al, P, B, and As
dopants leads to a considerable reduction in κ; as summarized
in Fig. 4, the calculated ordering is κSiAl(total) = 78.18 ±
6.85 > κSiP(total) = 56.73 ± 5.21 > κSiB(total) = 39.27 ±

FIG. 4. Calculated thermal conductivities (after quantum correc-
tions) for bulk c-Si doped with B, As, P, and Al at T = 300 K and n =
4.875 × 1020/cm3. The dashed horizontal line indicates the predicted
κ value of undoped Si (=136.65 Wm−1K−1). For each doped system,
besides its bulk value [indicated as κSiX(total)], the κ values calculated
by isolating each of the effects of mass disorder [κSiX(mass)], bond
disorder [κSiX(bond)], and lattice strain [κSiX(strain)] are also plotted.

5.54 > κSiAs(total) = 18.32 ± 2.17 W/mK. Our simulations
clearly demonstrate that As and B doping can more effectively
suppress thermal transport in c-Si compared to P and Al.
Overall, the simulation results are consistent with existing
experimental observations. For instance, according to Liu
et al.,22 κSiP appears to be about twice larger than κSiAs when
n = 2.3 × 1020/cm3; in addition, Asheghi et al.23 demon-
strated that B doping tends to cause a greater suppression of κ

than P doping.

2. Relative contributions of mass disorder, bond disorder,
and lattice strain

Phonon scattering by substitutional dopants can be at-
tributed to the atomic mass and/or atomic radius differences
between the host and dopant atoms; the mass and radius
disparities are, respectively, related to the so-called mass
disorder and lattice strain effects. In addition, the existence of
the heterobonds between dissimilar (host and dopant) atoms
may cause phonon scattering (the so-called bond disorder
effect). Next, we discuss the relative contributions of mass
disorder, bond disorder, and lattice strain to the κ suppression
in each doped system.

Mass disorder effect. The effect of mass disorder was
examined by assuming that dopant atoms have the same radius
and force constants as Si (see Table I), but they have their own
masses (mB = 10.81, mAl = 26.98, mP = 30.97, mAs = 74.92,
mSi = 28.08); that is, the contributions of bond disorder and
lattice strain were excluded. Here, dopant atoms were located
at the same sites in the simulation cell as described in the
previous Subsec. B1.

As summarized in Fig. 4, the κ suppression is more
enhanced with increasing the ratio of mass difference (� =
|mSi − mX|/mSi, X = B, Al, P, As); the order from lowest to
highest is as follows, κSiAl(mass) = 123.61 ± 8.97 Wm−1K−1

(� = 0.039) < κSiP(mass) = 83.13 ± 7.28 Wm−1K−1

(� = 0.103) < κSiB(mass) = 41.82 ± 4.98 Wm−1K−1

(� = 0.615) < κSiAs(mass) = 19.05 ± 1.98 Wm−1K−1

(� = 1.668). The simulation results advocate well the model
suggested by Abeles for the alloy scattering strength (�)
due to mass difference;43 � ∝ [ (1−xi )Mi−(1−xi )Mh

xiMi+(1−xi )Mh
]2, where xi

and Mi are the fractional concentration and the mass of the
impurity atom, and Mh is the mass of the host atom; if
xi � 1, � ∝ (Mi−Mh

Mh
)2 = �2.

For As, κSiAs(mass) (=19.05 Wm−1K−1) is very close
to κSiAs(total) (=18.32 Wm−1K−1), indicating that the mass
disorder effect is primarily responsible for κ suppression in
the As-doped system. Likely, in the B-doped case where the
mass difference is also significant, the extent of κ reduction
[�κSiB(mass) = κSi − κSiB(mass)] due to mass disorder is
predicted to be 94.83 (=136.65 − 41.82) Wm−1K−1, which
is about 97% of the total reduction of 97.38 (�κSiB(total) =
κSi − κSiB(total) = 136.65 − 39.27) Wm−1K−1. On the other
hand, the mass disorder contribution appears to be relatively
insignificant for the Al- and P-doped cases, only about 22%
and 67%, respectively.

Bond disorder effect. To look at the bond disorder effect,
the masses and radii of dopant atoms were assumed to be the
same as those of the host Si atom, while other force constants
optimized for each doped system were used (see Table I). Our
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calculations show that the κ reduction due to bond disorder can
be significant for all four doped systems, following the order
of [κSiAl(bond) = 88.74 ± 8.13 > κSiB(bond) = 58.41 ±
4.74 > κSiP(bond) = 57.26 ± 5.88 > κSiAs(bond) = 52.31 ±
4.96 Wm−1K−1]. Interestingly, for the Al- and P-doped cases,
the bond disorder effect is found to be more important than
the mass disorder effect; that is, �κSiAl(bond) [= κSi −
κSiAl(bond) = 47.91 Wm−1K−1] and �κSiP(bond) [= κSi −
κSiP(bond) = 79.39 Wm−1K−1] are about 82% and 99%
of �κSiAl(total) (=58.47 Wm−1K−1) and �κSiP(total)
(=79.92 Wm−1K−1), respectively.

In the three-body SW potential, the interatomic forces
can be decoupled into two-body (F ) and three-body (G)
contributions; that is, F ∝ ε

σ 2 and G ∝ ελ
σ 2 , where σ , ε, and λ

are SW parameters. Looking at the two- and three-body force
components associated with dopant atoms, relative to the host
Si lattice, we can notice that only the two-body contribution
tends to be important for Al [γF (Al) = 1.005 and γG(Al) =
0.597], whereas both two- and three-body force disturbances
play a comparably important role in causing phonon scattering
in the B-, P-, and As-doped cases [γF (B) = 1.118, γG(B) =
1.283; γF (P) = 0.725, γG(P) = 1.581; γF (As) = 0.713,
γG(As) = 1.207].

Lattice strain effect. We looked at the lattice strain effect
by assuming that dopant atoms have the same mass and
force constants as Si, except θSi-Si-X and σSi-X (X = dopant).
As summarized in Fig. 4, our calculations suggest that the
doping-induced strain may play a minor role in suppressing
the lattice thermal conductivity, particularly in the P- and As-
doped systems (whose κ values are lower only by 3% and 9%,
respectively, compared to the undoped Si reference). This is not
surprising considering there is no significant dopant-induced
local lattice distortion; note the small difference of length
unit parameter between Si-dopant (σSi-P = 2.0994, σSi-As =
2.1702) and Si-Si (σSi-Si = 2.1052, from our DFT-GGA calcu-
lations), and also that the bend angles of θSi-Si-P (=109.3◦) and
θSi-Si-As (=107.6◦) are close to θSi-Si-Si (=109.5◦˚). Compared
to Al, P, and As, B causes relatively more lattice distortions
(θSi-Si-B = 114.8◦) because of its smaller radius (σSi-B =
1.8675) and thus leads to a larger strain effect; nonetheless,
the contribution of lattice strain turns out to be far smaller than
those of mass disorder and bond disorder.

Finally, it would be worth noting that the total reduction
of κ is substantially less than the summation of those
caused separately by mass disorder, bond disorder, and
lattice strain. For instance, in the B-doped case, the total
reduction [�κSiB(total)] of 97.38 Wm−1K−1 is much smaller
than 220.15 Wm−1K−1 [= �κSiB(mass) (=94.83 Wm−1K−1)
+ �κSiB(bond) (=78.24 Wm−1K−1) + �κSiB(strain)
(=47.08 Wm−1K−1)]. This can be explained by considering
Matthiessen’s rule which states that the total resistivity (τ−1

tot ) is
the sum of the resistivities due to individual scattering sources,
such as phonon-phonon (τ−1

p−p), mass disorder (τ−1
a,mass), bond

disorder (τ−1
a,bond), and lattice strain (τ−1

a,strain); that is, τ−1
tot =

τ−1
a,mass + τ−1

a,bond + τ−1
a,strain + τ−1

p−p. As such, if one component
is predominant, the other scattering effects become less
important than the cases considered separately.

IV. SUMMARY

We examined the underlying causes of thermal conductivity
suppression in substitutionally doped Si using NEMD simula-
tions; here, four different dopant elements (X = B, Al, P, As)
were considered. While heat conduction in Si is mainly gov-
erned by phonon transport, we analyzed especially the relative
roles played by the differences in atomic mass (mass disorder)
and atomic radius (lattice strain) as well as the hetero bonds
(bond disorder) between host and dopant atoms in the thermal
conductivity suppression of Si by doping-induced phonon-
impurity scatterings. Nonequilibrium molecular dynamics
simulations were performed using the three-body Stillinger–
Weber (SW) potential model, and adjustable SW parameters
were reoptimized for Si-X interatomic interactions by fitting
to the restoring forces associated with atomic displacements
from DFT calculations. With the modified SW parameters,
we first assessed the thermal conductivity (κ) variation of
B-doped Si with dopant concentration (nB); the κ-nB relation
(after quantum corrections) is found to follow the inverse
power law, κ = κSi/[1 + A( nB

1020 )α] with A = 0.74186, α =
0.7411, and κSi = 136.65 Wm−1K−1. The simulation results
show excellent agreement with existing experimental data,
increasing our confidence in the force-field-based approach
to estimate the lattice thermal conductivity of doped Si at
moderate temperatures. At n= 4.875 × 1020/cm3, our NEMD
simulations predict the κ value to be reduced from 136.65 ±
9.15 (undoped Si) to 18.32 ± 2.17/39.27 ± 5.54/56.73 ±
5.21/78.18 ± 6.85 W/mK in As-/B-/P-/Al-doped Si. While
the suppression of κ appears to be a strong function of dopant
element, our calculations clearly demonstrate that the mass
disorder effect is predominant in the As- and B-doped cases
where the host-dopant mass difference is significant. On the
other hand, the bond disorder effect is found to be substantially
more important than the mass disorder effect in the Al- and
P-doped cases. For these dopant elements considered, the
contribution of lattice strain turns out to be far smaller than
those of mass disorder and bond disorder. This study highlights
the importance of not only mass disorder but also bond disorder
in determining the κ of Si-based alloy materials. The improved
understanding can provide insight into how to modify Si-based
materials to enhance their thermoelectric properties through
doping and/or alloying.
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